Quarterly (spring, summer, fall, winter)
176 pp. per issue
7 x 10
2014 Impact factor:

Evolutionary Computation

Winter 2019, Vol. 27, No. 4, Pages 577-609
(doi: 10.1162/evco_a_00234)
© 2018 Massachusetts Institute of Technology
Search Dynamics on Multimodal Multiobjective Problems
Article PDF (2.38 MB)
We continue recent work on the definition of multimodality in multiobjective optimization (MO) and the introduction of a test bed for multimodal MO problems. This goes beyond well-known diversity maintenance approaches but instead focuses on the landscape topology induced by the objective functions. More general multimodal MO problems are considered by allowing ellipsoid contours for single-objective subproblems. An experimental analysis compares two MO algorithms, one that explicitly relies on hypervolume gradient approximation, and one that is based on local search, both on a selection of generated example problems. We do not focus on performance but on the interaction induced by the problems and algorithms, which can be described by means of specific characteristics explicitly designed for the multimodal MO setting. Furthermore, we widen the scope of our analysis by additionally applying visualization techniques in the decision space. This strengthens and extends the foundations for Exploratory Landscape Analysis (ELA) in MO.