Quarterly (March, June, September, December)
160 pp. per issue
6 3/4 x 10
2014 Impact factor:

Computational Linguistics

Paola Merlo, Editor
June 2019, Vol. 45, No. 2, Pages 339-379
(doi: 10.1162/coli_a_00350)
© 2019 Association for Computational Linguistics Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license
Ordered Tree Decomposition for HRG Rule Extraction
Article PDF (543.77 KB)
We present algorithms for extracting Hyperedge Replacement Grammar (HRG) rules from a graph along with a vertex order. Our algorithms are based on finding a tree decomposition of smallest width, relative to the vertex order, and then extracting one rule for each node in this structure. The assumption of a fixed order for the vertices of the input graph makes it possible to solve the problem in polynomial time, in contrast to the fact that the problem of finding optimal tree decompositions for a graph is NP-hard. We also present polynomial-time algorithms for parsing based on our HRGs, where the input is a vertex sequence and the output is a graph structure. The intended application of our algorithms is grammar extraction and parsing for semantic representation of natural language. We apply our algorithms to data annotated with Abstract Meaning Representations and report on the characteristics of the resulting grammars.