Quarterly (Winter, Spring, Summer, Fall)
330 pp. per issue
8 1/2 x 11

Network Neuroscience

Olaf Sporns, Editor
Summer 2017, Vol. 1, No. 3, Pages 254-274
(doi: 10.1162/NETN_a_00013)
Consistency of Regions of Interest as nodes of fMRI functional brain networks
Article PDF (1.12 MB)

The functional network approach, where fMRI BOLD time series are mapped to networks depicting functional relationships between brain areas, has opened new insights into the function of the human brain. In this approach, the choice of network nodes is of crucial importance. One option is to consider fMRI voxels as nodes. This results in a large number of nodes, making network analysis and interpretation of results challenging. A common alternative is to use predefined clusters of anatomically close voxels, Regions of Interest (ROIs). This approach assumes that voxels within ROIs are functionally similar. Because these two approaches result in different network structures, it is crucial to understand what happens to network connectivity when moving from the voxel level to the ROI level. We show that the consistency of ROIs, defined as the mean Pearson correlation coefficient between the time series of their voxels, varies widely in resting-state experimental data. Therefore the assumption of similar voxel dynamics within each ROI does not generally hold. Further, the time series of low-consistency ROIs may be highly correlated, resulting in spurious links in ROI-level networks. Based on these results, we recommend that averaging BOLD signals over anatomically defined ROIs should be carefully considered.Network methods have opened new insights on structure and functional dynamics of the human brain. However, constructing functional brain networks is far from trivial—the neuroscientific community still lacks a standard definition of the nodes of brain networks. In the present article, we consider the two most commonly used approaches: using either imaging voxels or predefined Regions of Interest (ROIs) as nodes of the network. We investigate what happens when voxel-level signals are averaged for obtaining ROI-level networks. We introduce the concept of ROI consistency to characterize the similarity of the dynamics of voxels in an ROI. With the help of consistency, we show that although voxels in an ROI are assumed to behave similarly, this assumption does not hold for all ROIs.