Monthly
208 pp. per issue
8 1/2 x 11, illustrated
ISSN
0898-929X
E-ISSN
1530-8898
2014 Impact factor:
4.69

Journal of Cognitive Neuroscience

February 2016, Vol. 28, No. 2, Pages 210-222
(doi: 10.1162/jocn_a_00901)
© 2015 Massachusetts Institute of Technology
Phonological Processing in Primary Progressive Aphasia
Article PDF (429.51 KB)
Abstract

Individuals with primary progressive aphasia (PPA) show selective breakdown in regions within the proposed dorsal (articulatory–phonological) and ventral (lexical–semantic) pathways involved in language processing. Phonological STM impairment, which has been attributed to selective damage to dorsal pathway structures, is considered to be a distinctive feature of the logopenic variant of PPA. By contrast, phonological abilities are considered to be relatively spared in the semantic variant and are largely unexplored in the nonfluent/agrammatic variant. Comprehensive assessment of phonological ability in the three variants of PPA has not been undertaken. We investigated phonological processing skills in a group of participants with PPA as well as healthy controls, with the goal of identifying whether patterns of performance support the dorsal versus ventral functional–anatomical framework and to discern whether phonological ability differs among PPA subtypes. We also explored the neural bases of phonological performance using voxel-based morphometry. Phonological performance was impaired in patients with damage to dorsal pathway structures (nonfluent/agrammatic and logopenic variants), with logopenic participants demonstrating particular difficulty on tasks involving nonwords. Binary logistic regression revealed that select phonological tasks predicted diagnostic group membership in the less fluent variants of PPA with a high degree of accuracy, particularly in conjunction with a motor speech measure. Brain–behavior correlations indicated a significant association between the integrity of gray matter in frontal and temporoparietal regions of the left hemisphere and phonological skill. Findings confirm the critical role of dorsal stream structures in phonological processing and demonstrate unique patterns of impaired phonological processing in logopenic and nonfluent/agrammatic variants of PPA.