Monthly
208 pp. per issue
8 1/2 x 11, illustrated
ISSN
0898-929X
E-ISSN
1530-8898
2014 Impact factor:
4.69

Journal of Cognitive Neuroscience

August 2015, Vol. 27, No. 8, Pages 1587-1600
(doi: 10.1162/jocn_a_00809)
© 2015 Massachusetts Institute of Technology
Involvement of the TPJ Area in Processing of Novel Global Forms
Article PDF (1.34 MB)
Abstract

The neuropsychological syndrome “simultanagnosia” is characterized by the inability to integrate local elements into a global entity. This deficit in Gestalt perception is mainly apparent for novel global structures administered in clinical tests or unfamiliar visual scenes. Recognition of familiar complex objects or well-known visual scenes is often unaffected. Recent neuroimaging studies and reports from simultanagnosia patients suggest a crucial involvement of temporoparietal brain areas in processing of hierarchically organized visual material. In this study, we investigated the specific role of the TPJ in Gestalt perception. On the basis of perceptual characteristics known from simultanagnosia, we hypothesized that TPJ is dominantly involved in processing of novel object arrangements. To answer this question, we performed a learning study with hierarchical stimuli and tested behavioral and neuronal characteristics of Gestalt perception pre- and posttraining. The study included 16 psychophysical training sessions and two neuroimaging sessions. Participants improved their behavioral performance for trained global stimuli and showed limited transfer to untrained global material. We found significant training dependent neuronal signal modulations in anterior right hemispheric TPJ regions. These activation changes were specific to trained global stimuli, whereas no systematic neuronal response changes were observed for recognition of untrained global stimuli, local elements and regular objects that served as control stimuli. In line with perceptual characteristics in simultanagnosia, the results argue for an involvement of TPJ in processing of novel global structures. We discuss the signal modulations in the context of a more efficient or different neuronal strategy to process familiar global stimuli.