Neural Computation
The embedding of neural networks in real-time systems performing classification and clustering tasks requires that models be implemented in hardware. A flexible, pipelined associative memory capable of operating in real-time is proposed as a hardware substrate for the emulation of neural fixed-radius clustering and binary classification schemes. This paper points out several important considerations in the development of hardware implementations. As a specific example, it is shown how the ART1 paradigm can be functionally emulated by the limited resolution pipelined architecture, in the absence of full parallelism.