## Neural Computation

We determine the bandwidth of a model neurone to large-scale synaptic input by assessing the frequency response between the outputs of a two-cell simulation that share a percentage of the total synaptic input. For temporally uncorrelated inputs, a large percentage of common inputs are required before the output discharges of the two cells exhibit significant correlation. In contrast, a small percentage (5%) of the total synaptic input that involves stochastic spike trains that are weakly correlated over a broad range of frequencies exert a clear influence on the output discharge of both cells over this range of frequencies. Inputs that are weakly correlated at a single frequency induce correlation between the output discharges only at the frequency of correlation. The strength of temporal correlation required is sufficiently weak that analysis of a sample pair of input spike trains could fail to reveal the presence of correlated input. Weak temporal correlation between inputs is therefore a major determinant of the transmission to the output discharge of frequencies present in the spike discharges of presynaptic inputs, and therefore of neural bandwidth.