Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

December 1, 2004, Vol. 16, No. 12, Pages 2699-2713
(doi: 10.1162/0899766042321779)
© 2004 Massachusetts Institute of Technology
A Complex-Valued RTRL Algorithm for Recurrent Neural Networks
Article PDF (406.82 KB)
Abstract

A complex-valued real-time recurrent learning (CRTRL) algorithm for the class of nonlinear adaptive filters realized as fully connected recurrent neural networks is introduced. The proposed CRTRL is derived for a general complex activation function of a neuron, which makes it suitable for nonlinear adaptive filtering of complex-valued nonlinear and nonstationary signals and complex signals with strong component correlations. In addition, this algorithm is generic and represents a natural extension of the real-valued RTRL. Simulations on benchmark and real-world complex-valued signals support the approach.