Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

January 2008, Vol. 20, No. 1, Pages 91-117
(doi: 10.1162/neco.2008.20.1.91)
© 2007 Massachusetts Institute of Technology
Bayesian Spiking Neurons I: Inference
Article PDF (368.09 KB)
Abstract

We show that the dynamics of spiking neurons can be interpreted as a form of Bayesian inference in time. Neurons that optimally integrate evidence about events in the external world exhibit properties similar to leaky integrate-and-fire neurons with spike-dependent adaptation and maximally respond to fluctuations of their input. Spikes signal the occurrence of new information—what cannot be predicted from the past activity. As a result, firing statistics are close to Poisson, albeit providing a deterministic representation of probabilities.