288 pp. per issue
6 x 9, illustrated
2014 Impact factor:

Neural Computation

September 2007, Vol. 19, No. 9, Pages 2281-2300
(doi: 10.1162/neco.2007.19.9.2281)
© 2007 Massachusetts Institute of Technology
A Multichip Neuromorphic System for Spike-Based Visual Information Processing
Article PDF (1.04 MB)

We present a multichip, mixed-signal VLSI system for spike-based vision processing. The system consists of an 80 × 60 pixel neuromorphic retina and a 4800 neuron silicon cortex with 4,194,304 synapses. Its functionality is illustrated with experimental data on multiple components of an attention-based hierarchical model of cortical object recognition, including feature coding, salience detection, and foveation. This model exploits arbitrary and reconfigurable connectivity between cells in the multichip architecture, achieved by asynchronously routing neural spike events within and between chips according to a memory-based look-up table. Synaptic parameters, including conductance and reversal potential, are also stored in memory and are used to dynamically configure synapse circuits within the silicon neurons.