Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

April 2007, Vol. 19, No. 4, Pages 1022-1038
(doi: 10.1162/neco.2007.19.4.1022)
© 2007 Massachusetts Institute of Technology
A Maximum-Likelihood Interpretation for Slow Feature Analysis
Article PDF (515.51 KB)
Abstract

The brain extracts useful features from a maelstrom of sensory information, and a fundamental goal of theoretical neuroscience is to work out how it does so. One proposed feature extraction strategy is motivated by the observation that the meaning of sensory data, such as the identity of a moving visual object, is often more persistent than the activation of any single sensory receptor. This notion is embodied in the slow feature analysis (SFA) algorithm, which uses “slowness” as a heuristic by which to extract semantic information from multidimensional time series. Here, we develop a probabilistic interpretation of this algorithm, showing that inference and learning in the limiting case of a suitable probabilistic model yield exactly the results of SFA. Similar equivalences have proved useful in interpreting and extending comparable algorithms such as independent component analysis. For SFA, we use the equivalent probabilistic model as a conceptual springboard with which to motivate several novel extensions to the algorithm.