Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

July 1, 1996, Vol. 8, No. 5, Pages 979-1001.
(doi: 10.1162/neco.1996.8.5.979)
© 1996 Massachusetts Institute of Technology
Type I Membranes, Phase Resetting Curves, and Synchrony
Article PDF (911.74 KB)
Abstract

Type I membrane oscillators such as the Connor model (Connor et al. 1977) and the Morris-Lecar model (Morris and Lecar 1981) admit very low frequency oscillations near the critical applied current. Hansel et al. (1995) have numerically shown that synchrony is difficult to achieve with these models and that the phase resetting curve is strictly positive. We use singular perturbation methods and averaging to show that this is a general property of Type I membrane models. We show in a limited sense that so called Type II resetting occurs with models that obtain rhythmicity via a Hopf bifurcation. We also show the differences between synapses that act rapidly and those that act slowly and derive a canonical form for the phase interactions.