Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

April 1, 1996, Vol. 8, No. 3, Pages 501-509
(doi: 10.1162/neco.1996.8.3.501)
© 1996 Massachusetts Institute of Technology
Optimizing Synaptic Conductance Calculation for Network Simulations
Article PDF (455.62 KB)
Abstract

High computational requirements in realistic neuronal network simulations have led to attempts to realize implementation efficiencies while maintaining as much realism as possible. Since the number of synapses in a network will generally far exceed the number of neurons, simulation of synaptic activation may be a large proportion of total processing time. We present a consolidating algorithm based on a recent biophysically-inspired simplified Markov model of the synapse. Use of a single lumped state variable to represent a large number of converging synaptic inputs results in substantial speed-ups.