Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

February 15, 1996, Vol. 8, No. 2, Pages 416-424
(doi: 10.1162/neco.1996.8.2.416)
© 1996 Massachusetts Institute of Technology
A Self-Organizing Neural Network for the Traveling Salesman Problem That Is Competitive with Simulated Annealing
Article PDF (383.97 KB)
Abstract

Unsupervised learning applied to an unstructured neural network can give approximate solutions to the traveling salesman problem. For 50 cities in the plane this algorithm performs like the elastic net of Durbin and Willshaw (1987) and it improves when increasing the number of cities to get better than simulated annealing for problems with more than 500 cities. In all the tests this algorithm requires a fraction of the time taken by simulated annealing.