Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

July 1992, Vol. 4, No. 4, Pages 534-545.
(doi: 10.1162/neco.1992.4.4.534)
© 1992 Massachusetts Institute of Technology
Activity Patterns of a Slow Synapse Network Predicted by Explicitly Averaging Spike Dynamics
Article PDF (595.85 KB)
Abstract

When postsynaptic conductance varies slowly compared to the spike generation process, a straightforward averaging scheme can be used to reduce the system's complexity. Our model consists of a Hodgkin-Huxley-like membrane description for each cell; synaptic activation is described by first order kinetics, with slow rates, in which the equilibrium activation is a sigmoidal function of the presynaptic voltage. Our work concentrates on a two-cell network and it applies qualitatively to the activity patterns, including bistable behavior, recently observed in simple in vitro circuits with slow synapses (Kleinfeld et al. 1990). The fact that our averaged system is derived from a realistic biophysical model has important consequences. In particular, it can preserve certain hysteresis behavior near threshold that is not represented in a simple ad hoc sigmoidal input-output network. This behavior enables a coupled pair of cells, one excitatory and one inhibitory, to generate an alternating burst rhythm even though neither cell has fatiguing properties.