Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

July 1992, Vol. 4, No. 4, Pages 502-517
(doi: 10.1162/neco.1992.4.4.502)
© 1992 Massachusetts Institute of Technology
NMDA-Based Pattern Discrimination in a Modeled Cortical Neuron
Article PDF (841.61 KB)
Abstract

Compartmental simulations of an anatomically characterized cortical pyramidal cell were carried out to study the integrative behavior of a complex dendritic tree. Previous theoretical (Feldman and Ballard 1982; Durbin and Rumelhart 1989; Mel 1990; Mel and Koch 1990; Poggio and Girosi 1990) and compartmental modeling (Koch et al. 1983; Shepherd et al. 1985; Koch and Poggio 1987; Rall and Segev 1987; Shepherd and Brayton 1987; Shepherd et al. 1989; Brown et al. 1991) work had suggested that multiplicative interactions among groups of neighboring synapses could greatly enhance the processing power of a neuron relative to a unit with only a single global firing threshold. This issue was investigated here, with a particular focus on the role of voltage-dependent N-methyl-D-asparate (NMDA) channels in the generation of cell responses. First, it was found that when a large proportion of the excitatory synaptic input to dendritic spines is carried by NMDA channels, the pyramidal cell responds preferentially to spatially clustered, rather than random, distributions of activated synapses. Second, based on this mechanism, the NMDA-rich neuron is shown to be capable of solving a nonlinear pattern discrimination task. We propose that manipulation of the spatial ordering of afferent synaptic connections onto the dendritic arbor is a possible biological strategy for pattern information storage during learning.