Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

January 1992, Vol. 4, No. 1, Pages 84-97.
(doi: 10.1162/neco.1992.4.1.84)
© 1992 Massachusetts Institute of Technology
Alternating and Synchronous Rhythms in Reciprocally Inhibitory Model Neurons
Article PDF (676.98 KB)
Abstract

We study pacemaker rhythms generated by two nonoscillatory model cells that are coupled by inhibitory synapses. A minimal ionic model that exhibits postinhibitory rebound (PIR) is presented. When the post-synaptic conductance depends instantaneously on presynaptic potential the classical alternating rhythm is obtained. Using phase-plane analysis we identify two underlying mechanisms, “release” and “escape,” for the out-of-phase oscillation. When the postsynaptic conductance is not instantaneous but decays slowly, the two cells can oscillate synchronously with no phase difference. In each case, different stable activity patterns can coexist over a substantial parameter range.