208 pp. per issue
8 1/2 x 11, illustrated
2014 Impact factor:

Journal of Cognitive Neuroscience

August 2010, Vol. 22, No. 8, Pages 1662-1669
(doi: 10.1162/jocn.2009.21290)
© 2009 Massachusetts Institute of Technology
Cortical Projection Topography of the Human Splenium: Hemispheric Asymmetry and Individual Differences
Article PDF (328.32 KB)

The corpus callosum is the largest white matter pathway in the human brain. The most posterior portion, known as the splenium, is critical for interhemispheric communication between visual areas. The current study employed diffusion tensor imaging to delineate the complete cortical projection topography of the human splenium. Homotopic and heterotopic connections were revealed between the splenium and the posterior visual areas, including the occipital and the posterior parietal cortices. In nearly one third of participants, there were homotopic connections between the primary visual cortices, suggesting interindividual differences in splenial connectivity. There were also more instances of connections with the right hemisphere, indicating a hemispheric asymmetry in interhemispheric connectivity within the splenium. Combined, these findings demonstrate unique aspects of human interhemispheric connectivity and provide anatomical bases for hemispheric asymmetries in visual processing and a long-described hemispheric asymmetry in speed of interhemispheric communication for visual information.