Quarterly (March, June, September, December)
160 pp. per issue
6 3/4 x 10
ISSN
0891-2017
E-ISSN
1530-9312
2014 Impact factor:
1.23

Computational Linguistics

Paola Merlo, Editor
December 2010, Vol. 36, No. 4, Pages 723-763
(doi: 10.1162/coli_a_00017)
© 2010 Association for Computational Linguistics
A Flexible, Corpus-Driven Model of Regular and Inverse Selectional Preferences
Article PDF (628.9 KB)
Abstract

We present a vector space–based model for selectional preferences that predicts plausibility scores for argument headwords. It does not require any lexical resources (such as WordNet). It can be trained either on one corpus with syntactic annotation, or on a combination of a small semantically annotated primary corpus and a large, syntactically analyzed generalization corpus. Our model is able to predict inverse selectional preferences, that is, plausibility scores for predicates given argument heads.

We evaluate our model on one NLP task (pseudo-disambiguation) and one cognitive task (prediction of human plausibility judgments), gauging the influence of different parameters and comparing our model against other model classes. We obtain consistent benefits from using the disambiguation and semantic role information provided by a semantically tagged primary corpus. As for parameters, we identify settings that yield good performance across a range of experimental conditions. However, frequency remains a major influence of prediction quality, and we also identify more robust parameter settings suitable for applications with many infrequent items.