ISBN: 9780262363136 | 448 pp. | March 2021

Linguistics for the Age of AI

Overview

The open access edition of this book was made possible by generous funding from Arcadia – a charitable fund of Lisbet Rausing.

One of the original goals of artificial intelligence research was to endow intelligent agents with human-level natural language capabilities. Recent AI research, however, has focused on applying statistical and machine learning approaches to big data rather than attempting to model what people do and how they do it. In this book, Marjorie McShane and Sergei Nirenburg return to the original goal of recreating human-level intelligence in a machine. They present a human-inspired, linguistically sophisticated model of language understanding for intelligent agent systems that emphasizes meaning—the deep, context-sensitive meaning that a person derives from spoken or written language.

With Linguistics for the Age of AI, McShane and Nirenburg offer a roadmap for creating language-endowed intelligent agents (LEIAs) that can understand, explain, and learn. They describe the language-understanding capabilities of LEIAs from the perspectives of cognitive modeling and system building, emphasizing “actionability”—which involves achieving interpretations that are sufficiently deep, precise, and confident to support reasoning about action. After detailing their microtheories for topics such as semantic analysis, basic coreference, and situational reasoning, McShane and Nirenburg turn to agent applications developed using those microtheories and evaluations of a LEIA's language understanding capabilities.

McShane and Nirenburg argue that the only way to achieve human-level language understanding by machines is to place linguistics front and center, using statistics and big data as contributing resources. They lay out a long-term research program that addresses linguistics and real-world reasoning together, within a comprehensive cognitive architecture.

Table of Contents

  1. Acknowledgments
  2. Setting the Stage
  3. 1. Our Vision of Linguistics for the Age of AI
  4. 2. A Brief Overview of Natural Language Understanding by LEIAs
  5. 3. Pre-Semantic Analysis and Integration
  6. 4. Basic Semantic Analysis
  7. 5. Basic Coreference Resolution
  8. 6. Extended Semantic Analysis
  9. 7. Situational Reasoning
  10. 8. Agent Applications: The Rationale for Deep, Integrated NLU
  11. 9. Measuring Progress
  12. Epilogue
  13. Notes
  14. References
  15. Index